# **PARABOLA**

#### **DEFINITION**

A parabola is the locus of a point which moves in a plane such that its distance from a fixed point (called the focus) is equal to its distance from a fixed straight line (called the directrix).



Let S be the focus. QN be the directrix and P be any point on the parabola. Then by definition. PS = PN where PN is the length of the perpendicular from P on the directrix QN.

### TERMS RELATED TO PARABOLA

Axis: A straight line passes through the focus and perpendicular to the directrix is called the axis of parabola.

Vertex: The point of intersection of a parabola and its axis is called the vertex of the parabola.

The vertex is the middle point of the focus and the point of intersection of axis and directrix.

Eccentricity: If P be a point on the parabola and PN and PS are the distance from the directrix and focus S respectively then the ratio PS/PN is called the eccentricity of the parabola which is denoted by e.

By the definition for the parabola e = 1.

If  $e > 1 \implies hyperbola$ ,  $e = 0 \implies circle$ ,  $e < 1 \implies ellipse$ 



### Latus Rectum

Let the given parabola be  $y^2 = 4ax$ . In the figure LSL' (a line through focus  $\perp$  to axis) is the latus rectum. Also by definition,

LSL' = 2 
$$(\sqrt{4a.a})$$
 = 4a

= double ordinate (Any chord of the parabola  $y^2 = 4ax$  which is  $\perp$  to its axis is called the double ordinate) through the focus S.

Note: Two parabolas are said to be equal when their latus recta are equal.

Focal Chord

Any chord to the parabola which passes through the focus is called a focal chord of the parabola.



### FOUR STANDARD FORMS OF THE PARABOLA

| Standard Equation                 | $y^2 = 4ax (a>0)$                       | $y^2 = -4ax(a>0)$                   | $x^2 = 4ay(a>0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $x^2 = -4ay(a > 0)$                                                                                    |
|-----------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Shape of Parabola                 | P(x, y) A $(0,0)$ S(a, 0) $x$ $x=a x=0$ | S(-a, 0) $X = -4ax$ $X = 0$ $X = a$ | $ \begin{array}{c c}  & & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & \\  & & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\$ | y = a $y = 0$ $A(0,0)$ $P(x, y)$ $C$ $A(0,0)$ $C$ $C$ $A(0,0)$ $C$ |
| Vertex                            | A(0, 0)                                 | A(0, 0)                             | A(0, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A(0, 0)                                                                                                |
| Focus                             | S(a, 0)                                 | S(-a, 0)                            | S(0, a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S(0, -a)                                                                                               |
| Equation of directrix             | x = -a                                  | x = a                               | y = –a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y = a                                                                                                  |
| Equation of axis                  | y = 0                                   | y = 0                               | x = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x = 0                                                                                                  |
| Length of latus rectum            | 4a                                      | 4a                                  | 4a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4a                                                                                                     |
| Extermities of latus rectum       | (a, ±2a)                                | (-a, ±2a)                           | (±2a, a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (±2a, –a)                                                                                              |
| Equation of latus rectum          | x = a                                   | x = -a                              | y = a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y = -a                                                                                                 |
| Equation of tangents at vertex    | x = 0                                   | x = 0                               | y = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y = 0                                                                                                  |
| Focal distance of a point P(x, y) | x + a                                   | x – a                               | y + a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y – a                                                                                                  |
| Parametric coordinates            | (at², 2at)                              | (–at², 2at)                         | (2at, at²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2at, –at²)                                                                                            |
| Eccentricity (e)                  | 1                                       | 1                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                      |

### REDUCTION OF STANDARD EQUATION

If the equation of a parabola contains second degree term either in y or in x(but not in both) then it can be reduced into standard form. For this we change the given equation into the following forms-

$$(y-k)^2 = 4a (x - h) \text{ or } (x - p)^2 = 4b (y - q)$$

Then we compare from the following table for the results related to parabola.

### GENERAL EQUATION OF A PARABOLA

If (h, k) be the locus of a parabola and the equation of directrix is ax + by + c = 0, then its equation is given by

$$\sqrt{(x-h)^2 + (y-k)^2} = \frac{ax + by + c}{\sqrt{a^2 + b^2}} \text{ which gives } (bx - ay)^2 + 2gx + 2fy + d = 0$$

where g, f, d are the constant.

Note

• The general equation of second degree  $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$  represents a parabola, if





(a) 
$$h^2 = ab$$

(b) 
$$\Delta = abc + 2fgh - af^2 - bg^2 - ch^2 \neq 0$$

# PARAMETRIC EQUATIONS OF A PARABOLA

Clearly  $x = at^2$ , y = 2at satisfy the equation  $y^2 = 4ax$  for all real values of t. Hence the parametric equation of the parabola  $y^2 = 4ax$  are  $x = at^2$ , y = 2at, where t is the parameter.

Also, (at<sup>2</sup>, 2at) is a point on the parabola  $y^2 = 4ax$  for all real values of t. This point is also described as the point 't' on the parabola.

### **EQUATION OF A CHORD**

- The equation of chord joining the points  $(x_1, y_1)$  and  $(x_2, y_2)$  on the parabola  $y^2 = 4ax$  is (i)  $y(y_1 + y_2) = 4ax + y_1y_2$
- The equation of chord joining the points  $(at_1^2, 2at_1)$  and  $(at_2^2, 2at_2)$  is-(ii)

$$(y-2at_1) = \frac{2at_2 - 2at_1}{at_2^2 - at_1^2} (x - at_1^2)$$

$$\Rightarrow y - 2at_1 = \frac{2}{t_1 + t_2} (x - at_1^2)$$
$$y(t_1 + t_2) = 2(x + at_1t_2)$$

Length of the chord y = mx + c to the parabola  $y^2 = 4ax$  is given by  $\frac{4}{m^2}\sqrt{1 + m^2}\sqrt{a(a - mc)}$ . (iii)

Condition for the Chord to be a Focal Chord

The chord joining the points  $(at_1^2, 2at_1)$  and  $(at_2^2, 2at_2)$  passes through focus provided  $t_1t_2 = -1$ .

Length of Focal Chord

The length of a focal chord joining the points  $(at_1^2, 2at_1)$  and  $(at_2^2, 2at_2)$  is  $(t_2 - t_1)^2$ .

Note:

- The length of the focal chord through the point 't' on the parabola  $y^2 = 4ax$  is  $a(t + 1/t)^2$
- The length of the chord joining two points  $t_1$  and  $t_2$  on the parabola  $y^2 = 4ax$  is

a 
$$(t_1 - t_2)\sqrt{(t_1 + t_2)^2 + 4}$$

# CONDITION FOR TANGENCY AND POINT OF CONTACT

The line y = mx + c touches the parabola  $y^2 = 4ax$  if  $c = \frac{a}{m}$  and the coordinates of the point of contact are

$$\left(\frac{a}{m^2},\frac{2a}{m}\right).$$

- The line y = mx + c touches parabola  $x^2 = 4ay$  if  $c = -am^2$
- The line x cos  $\alpha$  + y sin  $\alpha$  = p touches the parabola  $y^2$  = 4ax if asin<sup>2</sup>  $\alpha$  + p cos  $\alpha$  = 0.

## **EQUATION OF TANGENT IN DIFFERENT FORMS**

The equation of the tangent to the parabola  $y^2 = 4ax$  at the point  $(x_1, y_1)$  is

$$yy_1 = 2a (x + x_1)$$





Note:

(ii) Parametric Form

The equation of the tangent to the parabola  $y^2 = 4ax$  at the point (at<sup>2</sup>, 2at) is

$$ty = x + at^2$$

(iii) Slope Form

The equation of tangent to the parabola  $y^2 = 4ax$  in terms of slope 'm' is

$$y = mx + \frac{a}{m}.$$

The coordinate of the point of contact are  $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$ 

## POINT OF INTERSECTION OF TANGENTS

The point of intersection of tangents drawn at two different points of contact  $P(at_1^2, 2at_1)$  and  $Q(at_2^2, 2at_2)$  on the parabola  $y^2 = 4ax$  is



Note:

- Angle between tangents at two points  $P(at_1^2, 2at_1)$  and  $Q(at_2^2, 2at_2)$  on the parabola  $y_2 = 4ax$ is  $\theta = tan^{-1} \left| \frac{t_2 t_1}{1 + t_1 t_2} \right|$
- The G.M. of the x-coordinates of P and Q (i.e.,  $\sqrt{at_1^2 \times at_2^2} = at_1t_2$ ) is the x-coordinate of the point of intersection of tangents at P and Q on the parabola.
- The A.M. of the y-coordinates of P and Q (i.e.  $\frac{2at_1 + 2at_2}{2} = a(t_1 + t_2)$ ) is the y-coordinate of the point of intersection of tangents at P and Q on the parabola.
- The orthocentre of the triangle formed by three tangents to the parabola lies on the directrix.

# **EQUATIONS OF NORMAL IN DIFFERENT FORMS**

(i) Point form

The equation of the normal to the parabola  $y^2 = 4ax$  at a point  $(x_1, y_1)$  is

$$y - y_1 = -\frac{y_1}{2a}(x - x_1)$$

(ii) Parametric form

The equation of the normal to the parabola  $y^2 = 4ax$  at the point (at<sup>2</sup>, 2at) is

$$y + tx = 2at + at^3$$
.

(iii) Slope form

The equation of normal to the parabola  $y^2 = 4ax$  in terms of slope 'm' is

$$y = mx - 2am - am^3$$





Note: The coordinates of the point of contact are  $(am^2 - 2am)$ .

Condition for Normality

The line y = mx + c is normal to the parabola

$$y^2 = 4ax$$
 if  $c = -2am - am^3$  and  $x^2 = 4ay$  if  $c = 2a + \frac{a}{m^2}$ 

Point of Intersection of Normals

The point of intersection of normals drawn at two different points of contact  $P(at_1^2, 2at_1)$  and  $Q(at_2^2, 2at_2)$  on the parabola  $y^2 = 4ax$  is



$$R \equiv [2a + a(t_1^2 + t_2^2 + t_1^2), -at_1^2 (t_1 + t_2)]$$

Note:

If the normal at the point  $P(at_1^2, 2at_1)$  meets the parabola  $y^2 = 4ax$  again at  $Q(at_2^2, 2at_2)$ , then

$$t_2 = -t_1 - \frac{2}{t_1}$$

It is clear that PQ is normal to the parabola at P and not at Q.

- If the normals at the points  $(at_1^2, 2at_1)$  and  $(at_2^2, 2at_2)$  meet on the parabola  $y^2 = 4ax$ , then  $t_1t_2 = 2$
- The normal at the extremities of the latus rectum of a parabola intersect at right angle on the axis of the parabola.

Co-normal Points

Any three points on a parabola normals at which pass through a common point are called co-normal points Note:

This implies that if three normals are drawn through a point  $(x_1, y_1)$  then their slopes are the roots of the cubic:

$$y_1 = mx_1 - 2am - am^3$$
 which gives three values of m. Let these values are  $m_1$ ,  $m_2$ ,  $m_3$  then from the eq<sup>n</sup>.  
 $\Rightarrow am^3 + (2a - x_1)m + y_1 = 0$ 

The sum of the slopes of the normals at co-normal points is zero, i.e.,  $m_1 + m_2 + m_3 = 0$ .

and 
$$m_1 m_2 + m_2 m_3 + m_3 m_1 = \frac{2a - x_1}{a}$$
 and  $m_1 m_2 m_3 = -\frac{y_1}{a}$ 

- The sum of the ordinates of the co-normal points is zero (i.e.,  $-2am_1 2am_2 2am_3 = -2a(m_1 + m_2 + m_3) = 0$ .
- The centroid of the triangle formed by the co-normal points lies on the axis of the parabola





The vertices of the triangle formed by the co-normal points are  $(am_1^2 - 2am_1)$ ,  $(am_2^2, -2am_2)$  and  $(am_3^2, -2am_3)$ . Thus, y-coordinate of the centroid becomes

$$\frac{-2a(m_1+m_2+m_3)}{3} = \frac{-2a}{3} \times 0 = 0.$$

i.e., centroid of triangle 
$$\left(\frac{am_1^2 + am_2^2 + am_3^2}{3}, \frac{2am_1 + 2am_2 + 2am_3}{3}\right) = \left(\frac{am_1^2 + am_2^2 + am_3^2}{3}, 0\right)$$

Hence, the centroid lies on the x-axis i.e., axis of the parabola.]

If three normals drawn to any parabola  $y^2 = 4ax$  from a given point (h, k) be real, then h > 2a.

# POSITION OF A POINT & LINE W.R.T. A PARABOLA

- The point  $(x_1, y_1)$  lies outside, on or inside the parabola  $y^2 = 4ax$  according as  $y_1^2 4ax_1 >$ , = or < 0, respectively.
- The line y = mx + c will intersect a parabola  $y^2 = 4ax$  in two real and different, coincident or imaginary point, according as a mc >, = < 0.

Number of tangents drawn from a point to a parabola

Two tangents can be drawn from a point to a parabola. The two tangents are real and distinct or coincident or imaginary according as the given point lies outside, on or inside the parabola.

## **EQUATION OF THE PAIR OF TANGENTS**

|       | CONDITION                                                                                 | POSITION                                        | DIAGRAM                                               | NO. OF<br>COMMON<br>TANGENTS |
|-------|-------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|------------------------------|
| (i)   | $C_1C_2 > r_1 + r_2$                                                                      | do not intersect<br>or<br>one outside the other | $C_1$ $C_2$ $T_2$                                     | 4                            |
| (ii)  | $C_1C_2 <  r_1 - r_2 $                                                                    | one inside the other                            | C <sub>1</sub>                                        | 0                            |
| (iii) | $C_1C_2 = r_1 + r_2$                                                                      | external touch                                  | $T_1$ $T_2$                                           | 3                            |
| (iv)  | $C_1C_2 =  r_1 - r_2 $                                                                    | internal touch                                  | T <sub>2</sub> C <sub>1</sub>                         | 1                            |
| (v)   | $ \mathbf{r}_1 - \mathbf{r}_2  < \mathbf{C}_1 \mathbf{C}_2 < \mathbf{r}_1 + \mathbf{r}_2$ | intersection at two real points                 | $C_1$ $C_2$ $C_2$ $C_3$ $C_4$ $C_4$ $C_5$ $C_7$ $C_8$ | 2                            |



The equation of the pair of tangents drawn from a point  $P(x_1, y_1)$  to the parabola  $y^2 = 4ax$  is  $SS_1 = T^2$ .



where 
$$S = y^2 - 4ax$$
,  $S_1 = y_1^2 - 4ax_1$  and  $T = yy_1 - 2a(x + x_1)$ 

# LOCUS OF POINT OF INTERSECTION

The locus of point of intersection of tangent to the parabola  $y^2 = 4ax$  which are having an angle  $\theta$  between them given by  $y^2 - 4ax = (a + x)^2 \tan^2 \theta$ 

Note:

- If  $\theta = 0^{\circ}$  or p then locus is  $(y^2 4ax) = 0$  which is the given parabola.
- · If  $\theta = 90^{\circ}$ , then locus is x + a = 0 which is the directrix of the parabola.



The equation of chord of contact of tangents drawn from a point  $P(x_1, y_1)$  to the parabola  $y^2 = 4ax$  is T = 0 where  $T = yy_1 - 2a(x + x_1)$ .



Note:

- The chord of contact joining the point of contact of two perpendicular tangents always passes through focus.
- Lengths of the chord of contact is  $\frac{1}{a}\sqrt{(y_1^2 4ax_1)(y_1^2 + 4a^2)}$
- Area of triangle formed by tangents drawn from  $(x_1, y_1)$  and their chord of contact is  $\frac{1}{2a}(y_1^2 4ax_1)^{3/2}.$

# CHORD WITH A GIVEN MID POINT

The equation of the chord of the parabola  $y^2 = 4ax$  with  $P(x_1, y_1)$  as its middle point is given by

$$T = S_1$$
 where  $T = yy_1 - 2a (x + x_1)$  and  $S_1 = y_1^2 - 4ax$ .

# POLE AND POLAR

Let P be a given point. Let a line through P intersect the parabola at two points A and B. Let the tangents at A anf B intersect at Q. The locus of point Q is a straight line called the polar of point P with respect to the parabola and the point P is called the pole of the polar.







Equation of Polar of a Point

The polar of a point  $P(x_1, y_1)$  with respect to the parabola  $y^2 = 4ax$  is T = 0 where  $T \equiv yy_1 - 2a(x + x_1)$ . Coordinate of pole

The pole of the line  $l_X + my + n = 0$  with respect to the parabola  $y^2 = 4ax$  is  $\left(\frac{n}{\ell}, -\frac{2am}{\ell}\right)$ 

Conjugate points and conjugate lines

(i) If the polar of  $P(x_1, y_1)$  passes through  $Q(x_2, y_2)$  then the polar of Q will pass through P and such points are said to be conjugate points.

So two points  $(x_1, y_1)$  and  $(x_2, y_2)$  are conjugate points with respect to parabola  $y^2 = 4ax$  if  $yy_1 = 2a(x_1+x_2)$ 

(ii) If the pole of a line ax + by + c = 0 lies on the another line  $a_1x + b_1y + c_1 = 0$  then the pole of the second line will lie on the first and such line are said to be conjugate lines.

So two lines  $l_1x + m_1y + n_1 = 0$  and  $l_2x + m_2y + n_2 = 0$  are conjugate lines with respect to parabola  $y_2 = 4ax$  if  $(l_1n_2 + l_2n_1) = 2$  am<sub>1</sub>m<sub>2</sub>

Note

- · The polar of focus is directrix and pole of directrix is focus.
- · The polars of all points on directrix always pass through a fixed point and this fixed point is focus.
- · The pole of a focal chord lies on directrix and locus of poles of focal chord is a directrix.
- · The chord of contact and polar of any point on the directrix always passes through focus.

### DIAMETER OF A PARABOLA

Diameter of a parabola is the locus of middle points of a series of its parallel chords.

The equation of the diameter bisecting chords of slope m of the parabola  $y^2 = 4ax$  is  $y = \frac{2a}{m}$ .

